Melatonin inhibition of cancer growth in vivo involves suppression of tumor fatty acid metabolism via melatonin receptor-mediated signal transduction events.

نویسندگان

  • D E Blask
  • L A Sauer
  • R T Dauchy
  • E W Holowachuk
  • M S Ruhoff
  • H S Kopff
چکیده

The growth of rat hepatoma 7288CTC in vivo is stimulated by the uptake of linoleic acid (LA) and its metabolism to 13-hydroxyoctadecadienoic acid (13-HODE), an important mitogenic signaling molecule within this tumor. Conversely, the growth of a variety of experimental cancers in vivo is inhibited by either physiological or pharmacological levels of the pineal gland hormone melatonin, although the mechanism(s) are unknown. We tested the hypothesis that the mechanism of melatonin's anticancer action in vivo involves the inhibition of tumor LA uptake and metabolism to 13-HODE in hepatoma 7288CTC. Tumor uptake of LA and release of 13-HODE, measured in tissue-isolated rat hepatoma 7288CTC at 4-h intervals over a 24-h period, were highest during the light phase and lowest during the mid-dark phase, when plasma melatonin levels were lowest and highest, respectively. Pinealectomy eliminated this rhythm of tumor LA uptake and 13-HODE production, indicating that it was driven by the circadian melatonin rhythm. Perfusion of tissue-isolated tumors in situ with melatonin (1 nM) rapidly and reversibly inhibited the uptake of plasma fatty acids (FAs), including LA, and its metabolism to 13-HODE. These inhibitory effects of melatonin on tumor FA uptake and 13-HODE release were completely reversed by perfusion of tumors in situ with melatonin receptor antagonist S-20928, pertussis toxin, forskolin, or 8-bromo-cAMP. Perfusion of tumors in situ with melatonin also decreased tumor [3H]thymidine incorporation and DNA content; these effects on DNA synthesis were also prevented by the coperfusion of tumors with melatonin and S-20928, pertussis toxin, forskolin, 8-Br-cAMP, or 13-HODE. Pinealectomy stimulated tumor growth, LA uptake and metabolism to 13-HODE, and FA storage in hepatoma 7288CTC, whereas melatonin administration (200 microg/day) was inhibitory in vivo. Northern blot analysis revealed that, compared with normal liver tissue, hepatoma 7288CTC overexpressed mRNA transcripts for a plasma membrane-associated FA transport protein (FATP). FATP mRNA expression was unaffected by the treatment of tumor-bearing rats with daily afternoon melatonin injections or exposure to constant light. These results support a novel mechanism of tumor growth inhibition by melatonin involving a melatonin receptor-mediated suppression of cAMP levels, resulting in diminished tumor FA transport, possibly via decreased FATP function. The inhibition of these signal transduction events by melatonin culminates in the suppression of LA uptake, LA metabolism to the mitogenic signaling molecule 13-HODE, and cancer growth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light during darkness, melatonin suppression and cancer progression.

Over the past few years, we have shown that the surge of melatonin in the circulation during darkness represents a potent oncostatic signal to tissue-isolated rat hepatoma 7288CTC, which is an ER+ adenocarcinoma of the liver. This oncostatic effect occurs via a melatonin receptor-mediated suppression of tumor cAMP production that leads to a suppression of the tumor uptake of linoleic acid (LA),...

متن کامل

Melatonin: A therapeutic potential for the neurohormone in gallbladder disorders

In humans, N-acetyl-5-methoxytryptamine (melatonin), a neurohormone widely found in plants and animal sources, is synthesized from serotonin primarily by the pineal gland. However, it it is also produced in a number of other areas, e.g. the gastrointestinal tract. Melatonin regulates various biological and physiologic body functions and its role in the regulation of circadian rhythms, particula...

متن کامل

Melatonin: A therapeutic potential for the neurohormone in gallbladder disorders

In humans, N-acetyl-5-methoxytryptamine (melatonin), a neurohormone widely found in plants and animal sources, is synthesized from serotonin primarily by the pineal gland. However, it it is also produced in a number of other areas, e.g. the gastrointestinal tract. Melatonin regulates various biological and physiologic body functions and its role in the regulation of circadian rhythms, particula...

متن کامل

Melatonin receptors and signal transduction mechanisms.

The ovine pars tuberalis (PT) still offers the best model for the study of signal transduction pathways regulated by the melatonin receptor. From the evidence accumulated so far, it seems likely that the cAMP signal transduction pathway will be a major effector of a stimulatory signal to the PT which can be regulated by melatonin. Thus a principal action of melatonin in the PT may be the repres...

متن کامل

Melatonin: an inhibitor of breast cancer.

The present review discusses recent work on melatonin-mediated circadian regulation, the metabolic and molecular signaling mechanisms that are involved in human breast cancer growth, and the associated consequences of circadian disruption by exposure to light at night (LEN). The anti-cancer actions of the circadian melatonin signal in human breast cancer cell lines and xenografts heavily involv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 59 18  شماره 

صفحات  -

تاریخ انتشار 1999